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Abstract

The mode supported by a wire located parallel to a grounded dielectric slab are investigated. While at low

frequencies, a 11qua5i_TEM!1 behavior is exhibited, it is shown numerically that under Certain conditions, a very

different “surface-attached” character appears. These results indicate the possibility of similar behavior

occurring in the related configuration of open microstrip.

Introduction

It has recently been demonstrated [1,2] that a thin

horizontal wire located parallel to a conducting earth
can support a so-called “earth-attached” mode in addi-
tion to the well-known “transmission-line” mode which
becomes TEM in the limit of a perfectly conducting
earth. The apparent physical mechanism which gives

rise to this new mode seems to be an interaction of the

wire with the Zenneck surface wave of the air-earth
interface. If, instead of a semi-infinite earth, the

wire is located near a grounded dielectric slab (Fig.1),

it seems possible that a similar interaction could occur
with the TM mode of the slab (whose surface wave char-

acter is more pronounced than that of the Zenneck wave),

and that a second mode could be generated in this case

as well. Because of its structural similarity to that

of microstrip, while being simpler to formulate mathe-

matically, it was decided to investigate this configu-

ration to decide whether such a phenomenon could be

expected in the latter case before actually performing

the analysis. The only previous related work seems to

have been an investigation of a wire centered in an

ungrounded slab [3], but in this case no TEM mode

exists in the low-frequency limit.

Formulation of the Modal Equation

Let the thickness of the slab be t, and its relative

permittivity E =n2. The wire, whose radius is a, is
r

located at a height d above the surface of the slab.
The modal equation can be derived in a thin wire approx-
imation by following a procedure similar to that of
Wait [4] for the wire over earth. If propagation of,

the form exp(ikouz-iot) is assumed, where ko=~(Poso)r,

the z-axis coincides with the axis of the wire, and a

is a normalized propagation constant, we obtain

‘1)(2LD)] + F(a) = OC2[H(1) (ZA) -Ho
o

(1)

where

A=koa; D=kod; c = (1-a2) , Im c~O

~(l) is the ~ankel function of first kind) and

r[C:ulcosh U2T+ 2u2T]sinhu2T e_2u1D dA
F (a) =4

where

1“” -~ [ulsinh u2T+u2cosh U2T] [nzulcosh u2T+u2sinh U2T]

(2)

T=kot; Ln= (n2-~2)* , ImCn~O
1

l-j= (a*_#)~ , Re U1 > O;
‘2

=(A2@, Re U2L0

AS n+- or T+(), it can be shown that F(a) +0, and thus
the first two terms of (1) represent the effect of the
wire and a perfect image at a distance d below the sur-

face of the slab. The solution to (1) in either of
these limits is G= O or a=il, and the mode is the TEM
mode on the wire-image transmission line.

F(a) represents the effect of the slab, and in fact the

first term in brackets in the denomination of (2) is,

when set equal to zero, the modal equation for TE sur-
face waves of the slab, while the second brackets is

that for TM surface waves.

If the condition (n2-l);T <<l is satisfied, there
are no TE modes on the slab, and only one TM mode (thus

one pair of poles in the int~grand of (2)). Under the

additional constraint (n2-l)~D~l, the damping influence

of the exponential in (2) allows the hyperbolic func-
tions to be approximated by their small argument forms,

giving

I

m C:U1+C2U:T
F(a) ~+

-2u1DdA
e (3)

-m (U1+l/T) (n2ul+u~T)

which, under the conditions above further reduces to

.

N 1 c12 22-
F(a) =% — — +% -2u1DdA

ul+l/T - U1-(3 _ e
(4)

-m U1+n2/T

where

R = (n2-l)T/n2 (5)

is the approximate location of the TM surface wave
value for u . Further approximations valid under the

same condit~ons give

J
‘e-2ulD m

2
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UT
dh=& 1 -2u1Dd1
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‘1) (2c(D+T))
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and likewise

J2 m e-2ulD
dA = H~l) (2 CD) - H$l) (2 C(D+T/n2))m

(7)

-m u1+n2/T

Integrals similar to the last term in (4) are encoun-

tered in the wire over earth problem [2,5,6], where
methods for their approximate evaluation are given.

For the particular case when lgDl <<1, we obtain by
these

J

2-
-1-1-1

-m

where

denotes the location of the lowest order TM mode of the
slab; just as modes with a2<I must be leaky since they

radiate into the free space above the slab, modes with

l<ll? <c? must radiate into the TM surface wave away
P

from the wire, and are thus also leaky. The reader’s
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attention is called to the singularity of (8) at IX= a

which can in principle be a large contribution ,to the
P’

modal equation.

Combining (l), (4), (6), (7) and (8), we obtain the

;:~x~H~ly
odal equation, after the small argument

are taken:
o

where Y= 0.5772. . . is Eulerts constant. For two special

cases, perturbation solutions of (10) can be found:

1) snot close to ~: Here the term in curly brackets

in (10) can be neglected because of the presence of

the small factor 62. The perturbation solution to (10)

is thus simply

2. !,n[2(D+T)/A] B
= 1 + D n(2D/A)

(11)

!Z.n[2(D+T/n2)/A]

This is the quasi-TEM a proximation; in order for it to
Ybe a proper mode (ct2 >cip) we must have

~D!Ln(2D/A) < 1 (ha)

which is certainly true for sufficiently low frequen-

cies.

2) a close to a : Let us assume that 42-W2 .626
n D

,

where 6 =0(1) isra positive number. Now the ~ingular

part of (10) dominates, and we obtain a “surface-

attached” approximation

6=
2Tl (12)

6~Ln(2D/A)+2 9.m6D+2y+2]-l/D

and since d >0 we require

~D[Ln(2D/A) + 2!n6D+2y +2] > 1 (12a)

Under the present assumptions, it seems unlikely that

(ha) and (12a) could be satisfied simultaneously (so
that only one mode exists), but if A is sufficiently

small, (12a) can be satisfied and a region is entered
in which the quasi-TEM theory is insufficient.

Numerical Results and Discussion

In order to test the validity of the approximate
modal equation (10), its numerical solution was compared
with a numerical solution of the exact modal equation

(1) using F(a) as given by (2). The latter (E) as well

as the solution of (10), (A), are shown in Fig. 2 for
n=l.5 and D=l. O. Reasonable agreement is found over
the entire range of T, but, as is to be expected from
the nature of the approximations, the best agreement
is for T< O.1. The prediction of the quasi-TEM theory
(11) i. also shown; for T > 0.1, the error in (a-l) is
measured in hundreds of per cent. The reason for this
failure of quasi-TEM theory can be seen by inspecting
(lo) . For small enough T, condition (ha) holds and o.
is sufficiently far from a to leave (11) unaffected. p

However, as can be seen in Fig. 2, u as given by (11)
soon becomes less than

7

, while the actual value of
a is !fdragged~wards b’ the influence of ~. Although

the value of a given by (12) turns out to be a rather

crude estimate for the cases considered here, it gives

the qualitatively correct behavior, and clearly for
values of T larger than about 0.2, the mode is heavily

influenced by the TM surface wave of the slab, and is

no longer even approximately a TEM-like mode. It is

thus to be expected that the fields of the mode, when

it has attained this “surface-attached” character, will

spread out along the slab away from the wire to a much

greater extent than those of a quasi-TEM mode. Similar
behavior has been found in the wire over earth problem

[1,2].

Figure 3 shows results for a substrate of higher

refractive index (n =3); similar behavior to that of
Figure 2 is found. In Figure 4, the (rather small)
effect of the value of D on the solution of (10) is
shown .

Conclusion

The numerical results presented here gave no evi-

dence of the existence of a second mode, as was found

for the wire over earth problem, but do indicate that

strong interaction with the TM surface wave of the

slab can occur as the electrical thickness of the slab

becomes significant. The singular term in (10) which

reflects this coupling can thus not be neglected in

this parameter range. A similar singular term has

been found in an analysis of microstrip [7] but was
neglected in solving the modal equation; other recent
treatments of stripline have also retained its influ-
ence implicitly [8,9]. The explicit display of this

term gives physical insight into the reason why

neither TEM nor quasi-TEM theory is sufficient for

such waveguides operating in this parameter range.
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Fig. 3 Solution of en. and quasi-TEM Fig. 4 Solution of eqn. (10) for various values of D,
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