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Abstract

The mode supported by a wire located parallel to a grounded dielectric slab are investigated.

While at low

frequencies, a "quasi-TEM" behavior is exhibited, it is shown numerically that under certain conditions, a very

different "'surface-attached" character appears.

Introduction

It has recently been demonstrated [1,2] that a thin
horizontal wire located parallel to a conducting earth
can support a so-called "earth-attached" mode in addi-
tion to the well-known 'transmission-line" mode which
becomes TEM in the limit of a perfectly conducting
earth. The apparent physical mechanism which gives
rise to this new mode seems to be an interaction of the
wire with the Zenneck surface wave of the air-earth
interface. If, instead of a semi-infinite earth, the
wire is located near a grounded dielectric slab (Fig.l),
it seems possible that a similar interaction could occur
with the TM mode of the slab (whose surface wave char-
acter is more pronounced than that of the Zenneck wave),
and that a second mode could be generated in this case
as well. Because of its structural similarity to that
of microstrip, while being simpler to formulate mathe-
matically, it was decided to investigate this configu-
ration to decide whether such a phenomenon could be
expected in the latter case before actually performing
the analysis. The only previous related work seems to
have been an investigation of a wire centered in an
ungrounded slab [3], but in this case no TEM mode
exists in the low-frequency limit.

Formulation of the Modal Equation

Let the thickness of the slab be t, and its relative
permittivity €. n. The wire, whose radius is a, is

located at a height d above the surface of the slab.

The modal equation can be derived in a thin wire approx-
imation by following a procedure similar to that of
Wait [4] for the wire over earth. If propagation of
the form exp(ikoqz—iwt) is assumed, where ko=w(uoeo)5,

the z-axis coincides with the axis of the wire, and
is a normalized propagation constant, we obtain
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As n»w or T->0, it can be shown that F{a) +0, and thus
the first two terms of (1) represent the effect of the
wire and a perfect image at a distance d below the sur-
face of the slab. The solution to (1) in either of
these limits is =0 or a=2*1, and the mode is the TEM
mode on the wire-image transmission line.
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These results indicate the possibility of similar behavior
occurring in the related configuration of open microstrip.

F(a) represents the effect of the slab, and in fact the
first term in brackets in the denomination of (2) is,
when set equal to zero, the modal equation for TE sur-
face waves of the slab, while the second brackets is
that for TM surface waves.
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If the condition (nZ—I)ET <<'1 is satisfied, there
are no TE modes on the slab, and only one TM mode (thus
one pair of poles in the integrand of (2)). Under the
additional constraint (n“-1)2D>1, the damping influence
of the exponential in (2) allows the hyperbolic func-
tions to be approximated by their small argument forms,
giving
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is the approximate location of the TM surface wave
value for u,. Further approximations valid under the
same conditions give
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Integrals similar to the last term in (4) are encoun-
tered in the wire over earth problem [2,5,6], where
methods for their approximate evaluation are given.
For the particular case when |CD| <<1, we obtain by
these methods
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denotes the location of the lowest order TM mode of the
slab; just as modes with a2<1 must be leaky since they
radiate into the free space above the slab, modes with

2 2

1<a <ocp must radiate into the TM surface wave away

from the wire, and are thus also leaky. The reader's



attention is called to the singularity of (8) at o= a_,
which can in principle be a large contribution to the P
modal equation.

Combining (1), (4), (6), (7) and (8), we obtain the
approximatelTodal equation, after the small argument
forms of Hg are taken:
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where v =0.5772... is Euler's constant. For two special
cases, perturbation solutions of (10) can be found:

1) o not close to : Here the term in curly brackets
in (10) can be neglécted because of the presence of
the small factor B2. The perturbation solution to (10)
is thus simply
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This is the quasi-TEM agproximation; in order for it to
be a proper mode (az >a“) we must have

p
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which is certainly true for sufficiently low frequen-
cies.

2) o close to o : Let us assume that /éz—a; = 626,

where 8§ =0 (1) is a positive number. Now the singular
part of (10) dominates, and we obtain a ""'surface-
attached" approximation
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and since § >0 we require
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Under the present assumptions, it seems unlikely that
(11a) and (12a) could be satisfied simultaneously (so
that only one mode exists), but if A is sufficiently
small, (12a) can be satisfied and a region is entered
in which the quasi-TEM theory is insufficient.

Numerical Results and Discussion

In order to test the validity of the approximate
modal equation (10}, its numerical solution was compared
with a numerical solution of the exact modal equation
(1) using F(a) as given by (2). The latter (E) as well
as the solution of (10), (A), are shown in Fig. 2 for
n=1.5 and D=1.0. Reasonable agreement is found over
the entire range of T, but, as is to be expected from
the nature of the approximations, the best agreement
is for T <0.1. The prediction of the quasi-TEM theory
(11) is also shown; for T > 0.1, the error in (au-1) is
measured in hundreds of per cent. The reason for this
failure of quasi-TEM theory can be seen by inspecting
(10). For small enough T, condition (ila) holds and o,
is sufficiently far from o to leave (11) unaffected.
However, as can be seen in Fig. 2, o as given by (11)
soon becomes less than , while the actual value of
o is ''dragged" upwards by the influence of o,. Although
the value of o given by (12) turns out to be a rather
crude estimate for the cases considered here, it gives
the qualitatively correct behavior, and clearly for
values of T larger than about 0.2, the mode is heavily
influenced by the TM surface wave of the slab, and is
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no longer even approximately a TEM-like mode. It is
thus to be expected that the fields of the mode, when
it has attained this '"surface-attached' character, will
spread out along the slab away from the wire to a much
greater extent than those of a quasi-TEM mode. Similar
behavior has been found in the wire over earth problem
[1,2].

Figure 3 shows results for a substrate of higher
refractive index (n =3); similar behavior to that of
Figure 2 is found. In Figure 4, the (rather small)
effect of the value of D on the solution of (10) is
shown.

Conclusion

The numerical results presented here gave no evi-
dence of the existence of a second mode, as was found
for the wire over earth problem, but do indicate that
strong interaction with the TM surface wave of the
slab can occur as the electrical thickness of the slab
becomes significant. The singular term in (10) which
reflects this coupling can thus not be neglected in
this parameter range. A similar singular term has
been found in an analysis of microstrip [7] but was
neglected in solving the modal equation; other recent
treatments of stripline have also retained its influ-
ence implicitly [8,9]. The explicit display of this
term gives physical insight into the reason why
neither TEM nor quasi-TEM theory is sufficient for
such waveguides operating in this parameter range.
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Fig. 1 Geometry of the problem. Fig. 2 Comparison of exact solution (E), solution of
eqn. (10) (A), and quasi-TEM approximation (QT),
for D=1.0, n=1.5.
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